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Abstract—With the increasing popularity of voice-based appli-
cations, acoustic eavesdropping has become a serious threat to
users’ privacy. While on smartphones the access to microphones
needs an explicit user permission, acoustic eavesdropping attacks
can rely on motion sensors (such as accelerometer and gyroscope),
which access is unrestricted. However, previous instances of such
attacks can only recognize a limited set of pre-trained words
or phrases. In this paper, we present AccEar, an accelerometer-
based acoustic eavesdropping attack that can reconstruct any au-
dio played on the smartphone’s loudspeaker with unconstrained
vocabulary. We show that an attacker can employ a conditional
Generative Adversarial Network (cGAN) to reconstruct high-
fidelity audio from low-frequency accelerometer signals. The
presented cGAN model learns to recreate high-frequency compo-
nents of the user’s voice from low-frequency accelerometer signals
through spectrogram enhancement. We assess the feasibility and
effectiveness of AccEar attack in a thorough set of experiments
using audio from 16 public personalities. As shown by the results
in both objective and subjective evaluations, AccEar successfully
reconstructs user speeches from accelerometer signals in different
scenarios including varying sampling rate, audio volume, device
model, etc.

I. INTRODUCTION

Nowadays, voice-based applications (e.g., voice over IP,
video conferencing, voice assistants) on smartphones are part
of our daily lives. Since the audio from such applications can
reveal private information about the user, mobile operating
systems grant access to the microphone only with explicit
user permission. To bypass this restriction, security researchers
leverage the unrestricted motion sensors (e.g., accelerometer,
gyroscope) as a side-channel to carry out acoustic eavesdrop-
ping attacks [1]-[5]. These side-channel attacks are possible
since motion sensors are sensitive to the vibrations produced
by sound waves. From motion sensors data, these prior works
can recognize words/phrases that are either spoken by the user
or emitted from the smartphone’s speaker.

While effective, most of prior attacks of audio eavesdrop-
ping using motion sensors treat the audio extraction problem
as a classification problem. Here, an attacker can create signa-
tures of motion sensor data for different words or phrases and
can recognize them using a machine learning model. However,

such an attack is primarily limited to the pre-trained set of
words and phrases and does not work well in reconstructing
any unknown audio signals. Ba et al. [4] propose a deep neural
network based approach for speech reconstruction, however
they can only recover the partial vowels in low frequency
region (below 1500Hz). The low sampling rate of motion
sensors imposes a limit, making the complete reconstruction
of audio an extremely challenging problem.

In this work, we present AccEar, a new type of
accelerometer-based eavesdropping attack that can reconstruct
any audio signal with unconstrained vocabulary. It uses the
accelerometer signals measured on a smartphone while the
audio is being played on the built-in smartphone speaker.
Given that the sampling rate of the accelerometer is limited
(maximum of 500Hz) by the mobile operating systems, the
low-frequency, low-resolution signal cannot be directly used
for audio reconstruction. We address this challenge by devel-
oping Conditional Generative Adversarial network (cGAN) [6]
based model that infers and recreates the high frequency com-
ponents based on the measured low-frequency accelerometer
signal. Through a limited amount of training set, our cGAN-
based model can learn the mapping between low-frequency
accelerometer data and the corresponding phonemes that they
represent, enabling us to reconstruct any audio signal (e.g.,
words, phrases, sentences, etc.) that is unknown to the model
(not used in training). For achieving this reconstruction, we
design our cGAN model to operate on spectrograms where it
learns to generate the complete audio spectrogram from the
given low-frequency accelerometer signal spectrogram. The
generated enhanced spectrograms are then used along with
the Griffin-Lim algorithm [7] to reconstruct clear, human-
perceivable audio.

Since our presented attack is not limited to the specific pre-
trained set of words or phrases, it greatly increases the risk of
information leakage in a wide range of commonly occurring
scenarios. Some of the scenarios are listed below:

e When a remote contact talks, shares videos or sends
voice messages to a user via smartphone, an attacker



can reconstruct the remote contact’s voice to steal private
information using AccEar.

An attacker can listen to user’s voice memos or com-
mands that may contain confidential information such
as passwords, schedules, phone numbers, social security
numbers, passcodes, etc.

When the user uses voice navigation, the attacker can
use AccEar to infer user’s location and other preferences
such as the type of location user likes to visit, restaurants,
points-of-interest, etc.

When the user’s smartphone plays an audio that may con-
tain a specific product name, the attacker can learn about
the user’s preferences of products, medical conditions,
etc.

The attacker can intercept the (voice-based) verification
codes commonly used in two-factor authentications to
obtain the access to user’s account.

Our contributions can be summarized as follows:

1y

2)

3)

We propose AccEar, an acoustic eavesdropping system
that uses accelerometer data to accurately reconstruct
the user speech played by the smartphone speaker. To
the best of our knowledge, AccEar is the first method
that actually recovers the speech content with an uncon-
strained vocabulary rather than recognizing individual
hot words/phrases.

Our proposed method converts low-frequency ac-
celerometer data into a comprehensible audio signal.
To do so, we train cGAN models to learn the mapping
between accelerometer data and the correspondent audio
played by the smartphone speaker. The cGAN model can
enrich an accelerometer signal by adding its missing
high-frequency components and using the previously
learned mapping to produce an audio signal. Our method
demonstrates that cGAN can substantially enhance an
attacker’s capabilities even when the available data has
limited resolution due to hardware or software restric-
tions.

We carry out an extensive evaluation of AccEar attack
using an audio dataset from 16 public personalities
and several real-world scenarios. AccEar achieves an
average Mel-Cepstral Distortion (a lower value indicates
a better reconstruction performance) of 4:784, a Mean
Opinion Score (a higher value indicates a better recon-
struction performance) of 3:637, and an average Word
Error Rate (a lower value indicates a better reconstruc-
tion performance) of 13:434% for twenty volunteers.
Through cross-user training, we also demonstrate that
AccEar can effectively reconstruct audio even when no
audio samples of the victim are available for the training.

The remaining paper is organized as follows. Section II

discusses the related work. Section III discusses the prelimi-
naries of accelerometer, phoneme, and GAN. In Section IV,
we present our system and describe its components in detail.
Section V performs the evaluation on our system. In Sec-
tion VI, we discuss the obtained results, meaningful insights,
and limitations of our work. Section VII summaries our work.

II. RELATED WORK

In this section, we introduce the works related to speech
reconstruction via IMU (Inertial Measurement Unit) and other
acoustic eavesdropping methods.

A. Acoustic eavesdropping attacks via IMU

In recent years, some security researchers focus on eaves-
dropping via motion sensors in smartphones as the motion
sensors are sensitive and precise enough to capture the vibra-
tions emitted by the object.

Michalevsky et al. [1] show that the gyroscopes in smart-
phones are sufficiently sensitive to measure acoustic signals
in their vicinity. The authors place a smartphone and an
active loudspeaker (i.e., playing sound) on the same solid
surface. The sound emitted by the loudspeaker passes through
the solid surface, which vibrations influence the readings
of the smartphone’s built-in gyroscope. Through analyzing
the gyroscope measurements, they enable to recognize the
person’s identity and even retrieve some particular speech
information. However, IMU data can only preserve informa-
tion from frequencies below 200Hz, which results in a low
accuracy (77%) of digits recognition.

Zhang et al. [2] assess that accelerometers are also sensitive
to the human voice. The authors hold the smartphone in
their hands or place it on the desk and speak to the phone,
which will cause the vibration of the accelerometer. Through
observing the changes in the accelerometer data, they observe
the vibration has specific pattern related to human’s spoken
words, and it is possible to extract the unique signatures of
the hot words from the accelerometer data. Based on this
observation, they design AccelWord to recognize the hot words
such as “Okay Google” or “Hi Galaxy” from accelerometer
data. However, Anand et al. [3] argue that both human- and
machine-rendered speech is not powerful enough to affect
smartphone motion sensors through the air.

More recently, Ba et al. [4] propose a new side-channel
attack which eavesdrops on the speaker based on the ac-
celerometer on the same smartphone. The vibration produced
by the speaker can propagate through the motherboard and
induce strong response on the accelerometer [4], [8]. Hence
they can utilize the accelerometer measurements to recognize
the sensitive information speech emitted by the speaker. They
employ a deep neural network to further improve hot words
recognition, which could achieve an accuracy of 99% for digits
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Fig. 1: Spectrogram of phonemes

only and 87% for the combination of digits and letters. How-
ever, this deep neural network fails to reconstruct phonemes
in high frequency (above 1500Hz), which renders it incapable
to perform full speech reconstruction.

All aforementioned works share the same disadvantage that
they can only recognize or reconstruct hot words from the pre-
established vocabulary. Since audio emitted by the speaker in
a real-world scenario typically carries much more information
instead of hot words solely, such a limitation drastically
reduces the amount of speech privacy that can be inferred.

B. Other acoustic eavesdropping attacks

Nowadays, the works related to eavesdropping have been
extensively studied. Davis et al. [9] recover sounds from high-
speed footage of a variety of objects with different properties,
such as a glass of water or a bag of chips, by using the
principle that sound hitting an object causes the surface of the
object to vibrate sightly. Kwong et al. [10] demonstrate that the
mechanical components in magnetic hard disk drives are sensi-
tive enough to extract and parse human speech. Guri et al. [11]
introduce the malware “SPEAKE(a)R”, which enables to turn
the headphones, earphones, or earbuds connected to a personal
computer into microphones when the standard microphone is
not working or tapped. Roy et al. [12] demonstrate that the
vibration motor in mobile devices enables them to serve as a
microphone by processing their response to the air vibrations
from nearby sounds. Wang et al. [13] access the information
of human conversations by detecting and analyzing the fine-
grained radio reflections from mouth movements. Wei et al.
[14] use the acoustic-radio transformation (ART) algorithm to
recover the sounds of the speaker device. Muscatell et al. [15]
use a laser transceiver to eavesdrop on the sound in the room.
In particular, the authors use a laser generator to shoot a laser
onto an object in the room and a laser receiver to receive the
reflected laser back. They can recover the sound by analyzing
the reflected laser. Nassi et al. [16] use the hanging bulb and
remote electro-optical sensor to eavesdrop sounds. The authors
show that the sound causes the air pressure on the surface
of the bulb to fluctuate so that the lamp is slightly vibrated.

Then they use the electro-optical sensor to analyze the hanging
bulb’s frequency response to sound to recover the sound.

III. PRELIMINARIES

In this section, we briefly introduce the principles of the
accelerometer, the characteristics of phonemes, and the idea
of generative adversarial networks. We also provide references
for an in-depth understanding of those topics.

Accelerometer is a three-axis sensor that accurately senses
and measures acceleration. It is one of the primary sensors
embedded into smartphones and has been widely used for
gaming, health tracking, and activity recognition [17]-[19].
An accelerometer consists of springs, fix electrodes, and an
electrode on a movable seismic mass. When an acceleration
is applied along a certain direction, the movable mass moves to
the opposite direction, thus changing the capacitance between
fixed electrodes. Then the accelerometer can calculate the
acceleration by measuring the changed capacitance. In our
work, when a built-in speaker plays the audio, it will produce
vibrations which will be propagated to the accelerometer via
the motherboard. And the vibrations induce a movement of
the accelerometer’s mass, registering acceleration.

Android operating system allows apps to access accelerom-
eter data at various sampling rates. By requesting the SEN-
SOR_DELAY_FASTEST mode [20], an app can acquire sen-
sor data at the maximum sampling rate. However, due to
the limitations posed by different smartphone manufactur-
ers, the maximum sampling rate of the accelerometer for
this mode can vary between 416~500Hz [4] on modern
smartphones (more details in Section V). According to
Nyquist sampling theorem, the accelerometer can only
capture the information below 250Hz while the sampling rate
of the accelerometer is 500Hz. To be able to reconstruct the
information in high frequency, we introduce the concept of
phonemes.

Phonemes are the smallest phonological units divided ac-
cording to the natural properties of speech [21]. We take the
English language as an example, the phonemes in English are
classified into two categories: vowels and consonants [22]. The
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number of vowels is 20 and their energy mainly distributes
below 2000Hz, while the number of consonants is 28 and their
energy mainly distribute below 8000Hz [23]. However, the
accelerometer can only capture limited speech information due
to the restricted sampling rate. Fig. 1 shows the spectrogram
of the accelerometer data and corresponding spectrogram of
audio for vowels and consonants. We can observe there exist
unique patterns for each phoneme on the spectrograms of both
accelerometer and audio. Based on this observation, we can
devise an approach which learns the mappings between the
accelerometer data and the audio. Besides, it should have
the capability to automatically generate the missing high-
frequency components with the low-frequency accelerometer
data based on the previously learned mappings.

Generative Adversarial Networks (GAN) [24] is a ma-
chine learning method that engages a game between two neural
networks, namely, a generator G and a discriminator D. As
shown in Fig. 2, G aims to generate new data (such as image,
music, etc) from a noise vector z, while D aims to discriminate
the G(z) based on the ground truth X. During the training
process, G constantly evolves to generate new data to try
to deceive D as if it is real. Similarly, D also evolves to
discriminate the data generated by G as fake. The training
process terminates until D cannot differentiate between real
and the “fake” data generated by G. This implies the data
generated by G is indistinguishable from the ground truth.
However, conventional GANs lack the capability to generate
new data that meets desired constraints or conditions. A
conditional GAN (cGAN) [6], which architecture is shown
in Fig. 3, allows us to define a condition y on the input data
for a GAN. Different from the traditional GAN, the generator
G aims to generate data G(z|y) from a noise vector z but
under the input condition y. Besides, the discriminator D still
aims to discriminate the generated data from the ground truth

X. However, D also maps G(z|y) to the original data X via
the condition Y. In the training process, G aims to learn such
a mapping and generate data that can deceit D. Therefore,
cGAN is a good candidate which can generate the lost high-
frequency components based on low-frequency accelerometer
data (condition).

IV. OUR AUDIO EAVESDROPPING ATTACK

In our proposed attack, the accelerometer is used to eaves-
drop on the audio played by the built-in speaker on a victim’s
smartphone. The whole process for the attack and its modules
are shown in Fig. 4. In this section, we first define the
threat model and assumptions for our attack. We then describe
in detail the two major components of our attack: feature
extraction and speech reconstruction.

A. Threat model

In our threat model, we assume a spyware has been installed
on the victim’s smartphone that collects the accelerometer data
in the background. When the built-in speaker of the victim’s
phone plays the sound, the spyware records accelerometer data
on all three-axis at the maximum sampling rate in the back-
ground. Hence, the attacker can access the raw accelerometer
data to carry out the eavesdropping attack. We only focus on
accelerometer data since such sensor has higher sensitivity
than the gyroscope, as pointed out by previous research [4].
Different from the other related works, we assume the attacker
has no prior information about the audio playing from the
victim speaker, which implies there is no pre-established
vocabulary. It is worth noting that we carry out our attack on
the victim’s phone independently from internal and external
factors. For this reason, we assess its effectiveness under
several settings, such as the smartphone’s manufacturer and
model, audio output volume from the speaker, position (lying
on a table or hand-held), user movements (still or walking),
and real-world scenario (e.g. quiet room, restaurant, street).

B. Feature Extraction

In this module, we apply several processing steps to the
raw accelerometer data to derive a proper representation as
the input for our speech reconstruction module.

Zero-mean normalization: The raw accelerometer mea-
surements along X;Y; z axis have different baseline value. For
example, the baseline value of z-axis is about 9:8 due to
the earth gravity while the other axes are 0. To exclude the
influence of earth gravity, we apply zero-mean normalization
to the raw data as follows,

Sij — Si
Sij = ——— (1)

where the Sjj represents the j-th sample of the i-th axis, and
i = 1;2; 3 denotes the X;Y;z axis respectively, the Sj denotes
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Fig. 5: Spectrogram of accelerometer data with human move-
ment

the mean value of Sj, and the denotes the standard deviation
of Sj. After zero-mean normalization, the mean value of the
data for each axis is zero under stationary scenario.

High-pass filter: In real-world scenarios, human activities
could significantly influence the accelerometer data. Fig. 5(a)
shows the spectrogram of accelerometer data with human
movement. We can observe that the human movement cor-
responds to a dominant component in the low frequency.
Hence we use a high-pass filter with a threshold of 20Hz
to remove the impact of human movement! while preserving
as much speech information as possible. The spectrogram of
the accelerometer signal after applying the high-pass filter is
shown in Fig. 5(b). The major difference between the original
and filtered signals is that the high-frequency speech-related
components can be presented clearly after filtering out the
low-frequency movement-based components.

Interpolation: As mentioned in Section III, the Android
operating system provides various sampling rate modes. How-
ever, the system does not guarantee a fixed time interval
between two measurements. To solve this problem, we apply
the linear interpolation approach to the accelerometer data
to fill the missing data. After interpolation, we obtain a
constant sampling rate at 1kHz for the accelerometer data. It

!The fundamental frequency of human speech is above 85Hz and the
perceptible frequency by the human ear is above 20Hz, the human activities
rarely affect the frequency components above 80Hz [4].
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Fig. 6: Accelerometer data response to the played audio.

is worth noting that while the interpolation fixes the unstable
time intervals in the original accelerometer data, it does not
introduce extra speech information [4].

Signal-to-spectrogram of Accelerometer data: After the
above steps, our accelerometer data is still three temporal
signals (one for each axis). As the input of cGAN requires
a two-dimensional image, we convert the accelerometer data
on the most responsive axis to an image-like spectrogram.

By comparing the waveform of the original audio with the
correspondent accelerometer data (as shown in Fig. 6), we can
observe that of z-axis is more responsive and less noisy than
X and y axes. Therefore, we choose the z-axis accelerometer
signal for the next conversion steps.

We divide the accelerometer signal into the fixed length
segments of four seconds and apply the Short-Time Fourier
transform (STFT) on each segment as follows,

STET{s(t)}( ;1) E%( 1)
> Sivggy (D
= s(thw(t— e '"'dt
where w( ) is the window function (Hann window is ap-
plied in this work), and s(t) is the accelerometer data to be

transformed. S( ;1) is the Fourier transform of s(t)w(t — )



/ z: ramdom
noise

|
y: spectrogram of
‘Qccelerometer data

Generator

\ “/x: spectrogram

of original audio

y: spectrogram of
)\ accelerometer data
/NS

Discriminator /
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which represents the phase and amplitude of the signal over
time and frequency.

After the STFT, we obtain the spectral characteristics of
accelerometer data. Due to the magnitude of the spectral
characteristics is close to zero, we take a square root of
the STFT results. Then we perform the normalization on the
spectral characteristics to speed up the convergence of cGAN
in the audio reconstruction module.

Audio-to-spectrogram conversion: The audio reconstruc-
tion module requires the original audio as ground truth for
model training. Therefore, we also convert the original audio
into an image-like spectrogram following a similar process.
However, different from the above signal-to-spectrogram con-
version, we convert the audio signal to a Mel spectrogram.
The mathematical relationship between the ordinary frequency
scale and the Mel frequency scale can be expressed as follows
[25],

Mel(f) = 2595 * log;o(1 + F=700) 3)

where T refers to the frequency. This conversion is necessary
since the perception in a human ear is not linear in terms of
frequency. In particular, the human ear is more sensitive to low
frequencies than high frequencies [26]. The Mel scale [25] is
the nonlinear transformation of frequency which distorts the
original audio frequency for better human perception.

C. Speech Reconstruction

The purpose of eavesdropping is to reconstruct the original
audio via the accelerometer data. We adopt a GAN variant
to enhance the spectrogram of the accelerometer data via the
generation of the high-frequency features, which are absent
from such signal.

conditional Generative Adversarial Networks (cGAN): As
we mentioned above, traditional GAN can only generate the
new data close to the training samples from random noise.
However, our main purpose is to transform the spectrogram
of accelerometer data to the Mel spectrogram of corresponding
audio. To enable the model to generate the corresponding
Mel spectrogram according to the different spectrogram of ac-
celerometer data, we refer the conditional GAN approach and
take the spectrogram of accelerometer data as the condition.

Fig. 7 illustrates our network architecture of cGAN. The
input for our cGAN is the ground truth X (i.e., the Mel
spectrogram of original audio) and the condition y (i.e., the
spectrogram of accelerometer data). From the combination
of a noise vector z and condition Yy, the generator G gen-
erates G(z|y) as one of the inputs for the discriminator D.
Additionally, the ground truth X and the condition y are
combined as another input of D, which represents the real
image under condition y. During the joint training process, D
tries to discriminate the G(z|y) from the ground truth X|y
while G tries to adjust its network parameters to generate
a G(z|y) which can fool D. For each phoneme in a word,
G automatically learns the mapping from accelerometer data
spectral features to speech spectral features through the zero-
sum game between G and D. Once the training process
completed, the generator G can correctly reconstruct a word
pronunciation via the accelerometer data, even if the word does
not appear in our training set.

Objective: To enable our reconstructed audio more closely
to the original audio, we define the loss function of magnitude
spectrogram of generated audio signals and original audio
signals [27]. It can be expressed as

Ls = [S(t;f) —Sp(t;F)||,;teT;fecF (4)

where S(t;f) and Sp(t;f) are the magnitude spectrogram
representation of the generated audio signals and original
audio signals respectively.

According to cGAN [6], the generator G aims to minimize
log(1—D(G(z | y))) while discriminator D aims to maximize
log(1—D(G(z | y))), as if they are following the two-player
min-max game. The objective of the cGAN is as follows.

=Ex[logD(x | y)]+
Ez[log(1 - D(G(z | y)))]

where X is the ground truth, y is the condition, and z is the
noise prior. Combining the loss function of signals magnitude
and the objective of conditional GAN, our final objective is
L* = [|S(t;F) — Sp(t; F), +
Ex~pu 00102 D(X | )]+ (6)
Ezep.@llog(1 —D(G(z |y)))liteT:feF

min mngcGAN (D; G)



