
Packet Aggregation based Back-pressure Scheduling in

Multi-hop Wireless Networks∗

Gaurish Deuskar, Parth H. Pathak, Rudra Dutta
Department of Computer Science, North Carolina State University, Raleigh, NC, USA.

Email: gaurishdeuskar@gmail.com, phpathak@ncsu.edu, dutta@csc.ncsu.edu

Abstract—The back-pressure based scheduling policy origi-
nally proposed by Tassiulas et al. in [1] has shown the potential of
solving many fairness and network utilization related problems
of wireless multi-hop networks. Recently, the scheduling policy
has been adapted in random medium access protocols such
as CSMA/CA using prioritization of MAC layer transmissions.
Here, MAC priorities are used to provide differentiated services
to nodes depending on their queue backlogs. Even though these
schemes work well in experiments to emulate back-pressure
scheduling, they perform poorly with realistic Internet-type traf-
fic where there is a large variation in packet sizes. In this paper,
we propose packet aggregation based back-pressure scheduling
which aggressively increases the rates at which back-logged
queues are served. Different from other aggregation schemes,
the presented scheme utilizes the back-pressure principles for
determining when and how much aggregation is performed. We
show that this results into increased service rates of back-logged
queues which in turn results into high network throughput and
utilization. We verify our scheme using simulations and testbed
experiments, and show that it achieves significant performance
improvements as compared to the original scheme.

I. INTRODUCTION

The back-pressure scheduling/routing policy first proposed

by Tassiulas et al. [1] has recently shown a great potential for

solving a number of issues in wireless multi-hop networks.

The central idea of back-pressure scheduling policy is that

contention among the links should be resolved by scheduling

the link which has the largest product of queue differential

backlog between its endpoints and transmission rate at which

the link can be served. In a perfectly time-slotted medium

access mechanism such as TDMA, this will result into optimal

throughput of flows while guaranteeing queue stability (ingress

traffic to a queue never exceeds its egress traffic). The utility

maximization framework initially proposed in [2] shows that

injection rates of flows should be chosen such that aggregate

utility of the flows is maximized. Here the utility of flow

represents a desirable effect on the network achieved by a

particular rate of the flow. It was shown in [3]–[6] that back-

pressure scheduling and utility based rate control together can

solve the global problem of network utility maximization.

The fundamental challenge with back-pressure framework is

that solution of the underlying scheduling strategy is NP-hard

[7]. Also, since it was proposed for a centralized, synchronized

and time-slotted system, a distributed implementation which

can achieve even a closer approximation is very difficult to

develop. Recently, [8], [9] have attempted to incorporate back-

pressure based scheduling in random medium access protocols

∗This work is supported by the U.S. Army Research Office (ARO) under
grant W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative
(SOSI). The contents of this paper do not necessarily reflect the position or
the policies of the U.S. Government.

such as CSMA/CA. These protocols try to approximate the

performance of the ideal back-pressure scheduler by prioritiz-

ing the frame transmissions according to differential backlogs

of queues. Here, every node in the network maintains a per

destination queue (PDQ) and the packets destined to a partic-

ular destination are stored in the PDQ of that destination until

further forwarding decisions are made. Now, nodes share their

PDQ information with their neighbors, and this information

is utilized by every node to calculate differential backlogs

of its PDQs. The differential backlog of a PDQ at a node

is equal to the size of the PDQ minus the size of the PDQ

of its upstream neighbor towards the destination. To emulate

the back-pressure scheduling, packets of the PDQ which has

the highest differential backlog (highest back-pressure) in the

neighborhood are given the higher chances for transmission.

This way, the likelihood that packets are transmitted from a

particular PDQ at a node is proportional to its differential

backlog compared to the differential backlogs of PDQs of all

nodes in the neighborhood. This prioritization quickly moves

the traffic from long back-logged queues to shorter queues

achieving an improved throughput and a better overall stability

of queues.

The idea of using different MAC layer priorities for PDQs

with different back-pressure works well in imitating the ideal

back-pressure scheduling over CSMA/CA. Even though this

enables a distributed implementation, it does not guarantee

that only the frames from maximum back-logged queue are

being transmitted at any given time. This is because MAC

priorities themselves are implemented by modifying the size

of the contention window from which the back-off times

are randomly chosen. A higher MAC priority frame uses a

shorter random back-off time before being transmitted, and

it is possible that frames from queue with lower differential

backlog get transmitted before frames from queue with higher

differential backlog. This problem of not serving the most

back-logged queue with the highest possible rate is further

aggravated by the fact that most of the packets in last mile

networks such as wireless mesh networks are very small in

size. [10]–[12] show that application layer traffic and TCP

acknowledgments account for more than 70 to 80 percent

of total traffic where packet sizes are lesser than 100 bytes.

With such small packet sizes, time required for medium

access and header/trailer overheads adversely affect the overall

performance. In case of prioritized frame transmissions, this

further reduces the chances that the most back-logged queue is

obtaining the maximum possible medium access. Even if the

packets are being transmitted from that queue, additional time

required for medium access before transmitting every small

2012 IEEE Wireless Communications and Networking Conference: MAC and Cross-Layer Design

978-1-4673-0437-5/12/$31.00 ©2012 IEEE 1263

packet accumulates to a large waste of available air time. Both

these factors reduce the rates at which back-logged queues

are served which in turn reduces the throughput and network

utilization.

In this paper, we propose utilizing packet aggregation in

the back-pressure framework. The objective is to increase

the throughput while maintaining the inherent properties and

benefits of back-pressure scheduler. The central idea is to

take advantage of packet aggregation for improving the rates

at which the back-logged queues are served. Different from

other packet aggregation schemes ([12]–[17]), the presented

strategy utilizes the back-pressure invariants to guide when

and how much aggregation is performed. Specifically, when a

queue has the highest differential backlog in the neighborhood,

instead of transmitting all its head of line packets one by one,

the proposed scheme aggregates the first few packets in a large

MAC frame which is then transmitted with the highest MAC

priority. The number of packets that are aggregated depends

on maximum allowable MAC frame size and the differential

backlog of the queue. The proposed scheme attempts to reduce

the size of the back-logged queues more aggressively which re-

sults into their faster service rates. Since the back-pressure pol-

icy is utilized to perform the aggregation, the presented scheme

preserves the network utility and fairness advantages of the

back-pressure policy while yielding an improved throughput

performance. This leads to a closer approximation to the

optimal solution of back-pressure problem (formally described

in section II). Apart from throughput improvements, aggre-

gation based back-pressure solution reduces the end-to-end

delay of packets dramatically which is especially important

in delay-constrained applications. We test our scheme using

OPNET simulations and testbed experimentation to verify its

performance. It is observed that our scheme outperforms the

most current implementation of back-pressure scheduler which

does not utilize packet aggregation.

The rest of the paper is organized as follows. Section II for-

mally describes the back-pressure framework along with utility

maximization. Section III presents the aggregation based back-

pressure scheduling strategy in details. The numerical results

of simulation and experimentation are presented in section IV

and we conclude the findings in section V.

II. THE BACK-PRESSURE FRAMEWORK

We first provide a brief overview of the back-pressure

framework. The back-pressure framework consists of two

parts: a link scheduling strategy based on back-pressure and a

rate control module for network utility maximization.

Back-pressure scheduling: Back-pressure based link

scheduling policy was originally proposed by Tassiulas et al.

in [1]. Let’s represent the network under consideration using

a graph G = (V,E). Let f denote a traffic flow from source

node s(f) to destination node d(f) and F be the set of all

flows currently active in the network. Let l(u, v) ∈ E denote

a link between node u and v, and γl(u,v) be the transmission

rate of link l(u, v). Transmission rates of all links in E are

presented by Γ = {γl(u,v), l(u, v) ∈ E}. Let χ be the set of

all possible combinations of rates at which links can operate.

Let us assume only for now that the transmission time

is divided into equal sized time slots. Every node u ∈ V

maintains a separate queue for destinations of all flows in F .

These queues at each node are also known as per destination

queues (PDQs). Packets received by u for a flow f destined

to d(f) is stored in the queue Q
d(f)
u until further forwarding

decisions are made. Let |Q
d(f)
u (t)| denote the size of the PDQ

maintained at node u for destination d(f) at time t. Every

node shares its PDQ length information with all its neighbors

at the beginning of time slot t. Every node then calculates

its differential backlog as compared to its neighbors for every

flow destination. That is, a node u calculates D
d(f)
l(u,v)(t) =

|Q
d(f)
u (t)| − |Q

d(f)
v (t)| for all l(u, v) ∈ E and all f ∈ F .

Now, for every link l(u, v) ∈ E, let

∆l(u,v)(t) = max
f∈F

(

D
d(f)
l(u,v)(t)

)

(1)

Back-pressure scheduling suggests that Γ at time t should be

chosen such that –

Γ(t) = max
Γ∈χ

∑

l(u,v)∈E

(

γl(u,v)∆l(u,v)(t)
)

(2)

It was proved in [1] that a routing/scheduling policy that can

achieve a solution of Equ. 2 is throughput optimal. This means

that it stabilizes the queues at every node while supporting

the largest possible capacity region. A capacity region (C)
of a network is defined as the set of all flow rates which

are supportable by the network. Due to link interference

constraints, the above mentioned problem is proven to be

NP-hard in wireless networks. Also, its distributed imple-

mentation imposes many more challenges in design of a

routing/scheduling scheme for wireless networks.

Rate control: The back-pressure scheduler determines the

transmission rates at which packets are served at links so that

the queue sizes at nodes remain bounded while maximizing

the achievable throughput. The other part of the back-pressure

framework performs the rate control of the flows. The flow

controller determines the rate at which flows can inject the

packets in the network. In back-pressure framework, the flow

controller determines the input rates of flows based on the state

of queues at each intermediate node. The PDQ information is

utilized by the flow controller to adjust the flow input rates in

a way that a desirable network-wide objective is optimized.

In a seminal work, [2] showed that such flow/congestion

control can be viewed as primal-dual algorithm for the solution

of network utility maximization problem. This was further

elaborated in [8] in context of the back-pressure framework

which we describe next.

Suppose that each flow f from s(f) to d(f) has a utility

function associated with it. This utility function Uf (xf) is

a function of the rate xf of the flow f . Let us represent

input rates of all flows using ψ = {xf , f ∈ F}. The utility

maximization problem suggests that the flow rates should be

chosen such that their aggregate utility is maximized, that is

1264

–

max
ψ∈C

∑

f∈F

Uf (xf) (3)

A flow controller that can maximize the aggregate utility was

presented in [8]. It suggests that in each time slot t, source

s(f) of a flow f injects a packet in the network if and only if

U ′

f(xf (t))− βQ
s(f)
d(f)(t) > 0, (4)

where U ′

f is the first derivative of utility function of the

flow and β is a small constant. The above condition interprets

to the fact that a packet should be injected into the network

by a flow only if the eventual utility benefit of the insertion

is larger than a constant times the size of source node PDQ.

That is when intermediate nodes of a flow are sufficiently

back-logged, the source node pushes more packets into the

flow at a slower rate. The back-pressure scheduler ensures

that queue backlog status of intermediate nodes is reflected

back at the source node which then performs the rate control

to accordingly change the flow input rate.

This way, the back-pressure based link scheduling controls

which links should be transmitting at what rate, and the rate

control module manages the rates at which the packets are

injected by the flows. Both together can solve the network-

wide utility maximization problem to yield a throughout-

optimal solution.

III. BACK-PRESSURE AND PACKET AGGREGATION

In this section, we provide the details of aggregation based

back-pressure scheduling. First, we show how back-pressure

scheduling is implemented using MAC priorities and then we

go on to describing the aggregation algorithm.

As described before, in back-pressure scheduling every node

maintains a PDQ for every flow passing through the node.

Note that we assume a fixed routing policy in this work where

routes are calculated in advance for every flow and packets

are forwarded on these routes only. This is different from an

ideal back-pressure strategy where the routing is adaptive, and

forwarding decisions are made on packet by packet basis. In

the ideal scheme, every neighbor of a node depending on its

size of PDQ is a potential candidate for forwarding the packet

[18]. Since our objective is to explore packet aggregation with

back-pressure strategy, we restrict our focus to fixed routing

and leave the adaptive routing extension to future work.

Due to fixed routing, every node has a unique upstream

neighbor for every flow passing through it. Now, the dif-

ferential backlog at a node u for flow f can be presented

as D
d(f)
u (t) = |Q

d(f)
u (t)| − |Q

d(f)
v (t)|, where v is next hop

neighbor of node u for flow f . Each node maintains following

information ([8], [9]) in order to correctly execute the joint

back-pressure and aggregation scheme –

1) Per destination Queue (PDQ) – a separate queue for each

destination of flows passing through the node. Every

packet (generated at the node or received from down-

stream neighbor) is stored in the PDQ of corresponding

destination until further forwarding decisions are made.

2) Urgency Weight – every PDQ has an urgency weight

associated with it. The urgency weight is the differen-

tial backlog which equals to the backlog of the PDQ

subtracted by the backlog of the PDQ on the next hop

neighbor towards the destination.

3) Urgency Weight State (UW state) – along with main-

taining PDQs and their corresponding urgency weights,

every node knows the PDQ ID, node ID and urgency

weight of the PDQ which has the maximum urgency

weight in the neighborhood. The same is also maintained

for the minimum urgency weight PDQ of the neighbor-

hood. This information determines a node’s UW state

with respect to its neighbors. To implement this, every

node shares its PDQ information with its neighbors by

using separate messages or piggybacking techniques.

4) Source List – source node of every flow which generates

packets first stores the packets in a per destination source

list. Once the rate control is performed then only the

packets are added to the corresponding PDQ at the node.

Different from the PDQs which are maintained at all

nodes, per flow source lists are only maintained at the

source nodes of the flows.

In a back-pressure scheduling implementation without ag-

gregation ([8], [9]), when a node sends out a frame from

a PDQ, it first determines its MAC layer priority. This is

described in Determine-MAC-priority function of Algorithm

1. The MAC priority is essentially determined by comparing

the urgency weight of the PDQ to the UW state of the

node. In essence, this compares the differential backlog of

the PDQ with the differential backlog of other PDQs in the

neighborhood and assigns it a MAC priority based on it.

Packets of the PDQ which has the highest urgency weight

in the neighborhood are assigned the highest MAC layer

priority for faster transmissions. Here, it is assumed that MAC

layer is able to provide differentiated levels of service. In our

experiments, 4 MAC layer priorities are considered starting

from 0 to 3. Packet sent out with higher priority has higher

chances of accessing the channel as compared to the packets

sent out at lower priorities. CSMA/CA MACs like 802.11e

provides such differentiated service levels which we also use

in our simulations. This prioritization of transmissions tries to

serve the longer queues with higher service rates which is the

ultimate objective as described in Equ. 2.

Packet aggregation: The service rates of back-logged

queues can be further increased if more and more packets are

transmitted from the queues with higher urgency weights. Note

that the above implementation of back-pressure strategy with-

out aggregation tries to maximize the chances that medium is

occupied by the packets transmitted from the longer queues,

but it does not guarantee to do so. Since a large number of

packets are very small in size and medium access has to

be initiated before every transmission, it is not guaranteed

that the packets of the longest queue in a neighborhood

receives the highest possible service rate from the medium.

Instead if the packets of the longest queues are aggregated

before their medium access and eventual transmission, more

1265

packets can be sent out from the backlogged queue in each

medium access. This eliminates the additional time required

for medium access by every small packet and increases the

total air time utilization by longer back-logged queues. This

increases the service rates of back-logged queues which in

turn maximizes the objective function presented in Equ. 2.

It is obvious that back-pressure with aggregation is also an

approximation of the optimal solution to Equ. 2 but is closes

the gap further towards the optimal solution by improving on

any currently available scheme.

Algorithm 1 Packet aggregation + back-pressure scheduling

maxAggSize ←Maximum allowable size of a MAC frame;

size ← 0,

q ←PDQ with the highest urgency weight,

repeat

Dequeue the HOL packet p from PDQ q,

Add p to the packet aggregate,

size := size + sizeof(p),

until size ≤ maxAggSize AND PDQ q has the highest

urgency weight in the neighborhood

Determine MAC priority of the aggregated packet using

Determine-MAC-priority(q),

Transmit the packet with the MAC priority,

Update the size and urgency weight of PDQ q.

Determine-MAC-priority(q)

numLevels ← Number of MAC priority levels,

max ←Maximum urgency weight in the neighborhood,

min ←Minimum urgency weight in the neighborhood,

urg ←Urgency weight of the PDQ q,

macPrioLevel := urg−min

max−min
∗ numLevels,

return macPrioLevel

Now we describe how exactly packet aggregation is per-

formed while using back-pressure invariants as guidelines.

Aggregation based PDQ scheduler at every node de-queues

the head of line packets from PDQ with the highest urgency

weight. The node then performs the check whether the PDQ

is in fact the highest urgency weight PDQ in the entire

neighborhood. If so, it de-queues more packets from the PDQ.

It continues to do so until the PDQ retains the highest urgency

weight in the neighborhood or until sum of the size of all the

de-queued packets is less than the maximum allowable MAC

frame size. All the de-queued IP packets are then bundled

into a large MAC frame of aggregated packets. The MAC

frame is then assigned a MAC priority depending on the

current UW state of the node. Since the PDQ from which

the packets were de-queued had the highest urgency weight

in the neighborhood, it is also likely that the MAC priority

of the frame of aggregated packets will be the highest too.

Because of aggregation the total time taken to transmit these

set of packets will be reduced as compared to their individual

transmissions. This increases the service rate of the PDQ

with highest urgency weight in the neighborhood yielding

a closer approximation of Equ. 2. The complete procedure

of aggregation and back-pressure scheduling is described in

Algorithm 1.

Rate control: While the back-pressure scheduling and

aggregation is performed at every node of the network, source

node of every flow performs the rate control. The function of

this rate control policy is to determine at what rate the packets

should be injected in the network. As described in section II,

the objective of such a flow control is to maximize the utility

(or benefit) associated with each flow. Here, whether a packet

is injected into a flow or not depends on the utility function of

the flow and the size of PDQ at the source node for the flow.

Specifically, a flow f injects a packet into the network as long

as U ′(xf) > βQ
s(f)
d(f)(t), where U

′(xf) is the first derivative

of the utility function Uf . We use Uf (xf) = log(xf) as the

utility function as described in [8]. β is a small constant whose

value is set to 10−6.

This means that the source node s(f) of a flow f first checks

whether U ′(xf) > βQ
s(f)
d(f)(t) condition holds. If the condition

holds true, the source node inserts the packet in its PDQ for

flow f . On the other hand, if the condition does not hold true,

the source node inserts the packets in the source list of the

flow. The source list acts as a tentative storage where packets

are buffered until rate control permits them to be added in

corresponding PDQ. When back-pressure scheduler transmits

packets from the PDQ, packets are added in the PDQ from the

source list using the rate control condition. At all times, any

addition or removal from PDQ is followed by recalculation of

urgency weight of the PDQ. If the source node PDQ reflects

that intermediate nodes are sufficiently back-logged, it slows

down the rate at which the packets are added from the source

list to the PDQ.

IV. NUMERICAL EVALUATION

In this section, we present the numerical results obtained

using simulation and testbed experimentation. First, we simu-

late the aggregation based back-pressure scheduling in OPNET

[19] and evaluate its performance under various different

performance metrics. Next, we provide details of testbed

implementation and related numerical results of observed

performance.

As it is obvious that the above mentioned back-pressure

framework requires every node to share their PDQ infor-

mation with every node in its reach. To implement this,

we piggyback the PDQ information on every packet that is

exchanged between a node and its neighbors. Specifically,

every packet carries an additional UW header which contains

the following information: 1) PDQ ID, urgency weight and

backlog (in bytes) of the PDQ from which the packet was

transmitted, 2) ID and urgency weights of maximum and

minimum urgency weight PDQs of the node from which the

packet was transmitted. The receiver uses this information

from every neighbor to calculate its own UW state. Then the

UW state is utilized to calculate the MAC layer priority of an

outgoing frame from that node. We use 4 priority levels for

MAC transmissions as provided by 802.11e.

1266

 0

 20000

 40000

 60000

 80000

 100000
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

B
ps

)

4 flows 8 flows 12 flows 16 flows

PDQ
PDQ + Aggregation

(a) Aggregate network throughput

 0

 20

 40

 60

 80

 100

 120

 140

N
/W

 u
til

ity

4 flows 8 flows 12 flows 16 flows

PDQ
PDQ + Aggregation

(b) Network utility

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

F
ai

rn
es

s
In

de
x

4 flows 8 flows 12 flows 16 flows

PDQ
PDQ + Aggregation

(c) Fairness

Fig. 1: Comparison of network throughput, network utility and flow throughput fairness in back-pressure scheduling with and

without aggregation

The aggregation based back-pressure scheduler and rate

control were implemented by modifying current 802.11 im-

plementation of OPNET. We first consider a 50 node topology

where nodes are uniform randomly placed in the network area.

Variable number of UDP flows are initiated between random

pairs of source and destination. The rate control is performed

by modifying how a UDP flow inserts data at the source node

from its source list to its corresponding PDQ. To understand

the impact of aggregation, we emulate realistic Internet-type

traffic scenario where packet sizes vary substantially [20].

Traffic for every flow is generated randomly in packet sizes of

40, 60, 80, 100, 200, 576 and 1400 bytes with their weights

being 40, 15, 10, 5, 5, 5 and 20 percent respectively.

There are various different performance metrics of interest

for evaluation of a back-pressure based strategy. We compare

our aggregation based scheduling/rate control to a back-

pressure scheduling/rate control scheme which does not per-

form any aggregation. Such a scheme was originally proposed

by [8]. One obvious metric of performance evaluation is

aggregate throughput which is simply the sum of throughput

of all flows in the network. Two other metrics – network utility

and throughput fairness are central to back-pressure based

policies. Since the back-pressure framework was originally

designed to maximize the network resource utilization while

maintaining the fairness among flows, we use both the metrics

in our evaluation. Network utility is measured as the sum

of logarithm of flow throughput rates (
∑

f∈F log(xf)). For
throughput fairness of flows, we use Jain’s index [21] which

is defines as –

Fairness index =
(
∑m

f=1 xf)
2

m
∑m

f=1 xf
2

(5)

where m is total number of flows in the network and xf is

the throughput of every flow.

Fig. 1a shows the aggregate throughput achieved with both

back-pressure and aggregation based back-pressure schemes.

The aggregation based strategy improves the throughput sig-

nificantly mainly because the backlogged queues are served at

faster rates when aggregation is utilized. Without aggregation,

every packet of backlogged queues requires additional time for

medium access. Also, overhead of MAC layer headers for each

frame without aggregation also accounts for a large wastage

of bandwidth. Both these issues are well addressed by the

utilizing aggregation along with back-pressure policy.

As we described before, the back-pressure strategy was

mainly devised to address low network utilization and un-

fairness issues in multi-hop wireless networks. Even though

aggregation with back-pressure scheduling increases the net-

work throughput, it is necessary to verify that it does not

do so by penalizing network utilization or fairness. Fig. 1b

shows the network utility of back-pressure scheme with and

without aggregation. It can be observed that in fact aggregation

can achieve same or sometimes more network utilization than

back-pressure scheme without aggregation. This is mainly due

to higher service rates of back-logged queues which in turn

allows rate control to insert more and more packets in the

flow, yielding an improved utilization. Similarly, Fig. 1c shows

the fairness index calculated for both schemes. It is observed

that aggregation also increases the throughput fairness in

most cases. This is attributed to the fact that aggregation

increases the air time utilization of back-logged queues more

aggressively which results into improved balance among flow

rates.

Another important performance metric related to back-

pressure strategies is the average buffer occupancy of nodes.

Since back-pressure framework guarantees a throughput op-

timal solution while stabilizing the queue, average buffer

occupancy displays how fast a given scheme transfers traffic

from highly back-logged queues to lesser back-logged queues.

Fig. 2a compares average buffer occupancy of four randomly

chosen nodes in both schemes. It shows that aggregation based

policy aggressively attempts to reduce the size of back-logged

queues which in turn reduces the overall buffer occupancy.

Lastly, we compare the average per packet delay in both the

schemes. This is especially an important metric because many

real-time, time-sensitive traffic flows in practice have tight de-

lay constraints. The back-pressure policy without aggregation

suffers from higher per packet delay mainly because of the

time overhead of medium access before transmitting every

small or large packet. With aggregation, average per packet

medium access time at every node along its path is reduced

drastically as shown in Fig. 2b. We have confirmed the above

presented results for other node placements such as random

1267

 0

 10

 20

 30

 40

 50

 60

 70
A

ve
ra

g
e

 B
u

ff
e

r
O

cc
u

p
a

n
cy

 (
p

a
ck

e
ts

)

4 flows 8 flows 12 flows 16 flows

PDQ
PDQ + Aggregation

(a) Average buffer occupancy

 0

 2

 4

 6

 8

 10

 12

 14

A
ve

ra
ge

 N
/W

 d
el

ay
 (

se
cs

)

4 flows 8 flows 12 flows 16 flows

PDQ
PDQ + Aggregation

(b) Average network delay

 0

 100

 200

 300

 400

 500

 600

 700

 800

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
K

bp
s)

50 bytes 100 bytes 200 bytes

PDQ
PDQ + Aggregation

(c) Aggregate throughput on Linux testbed

Fig. 2: Comparison of back-pressure scheduling with and without aggregation (a-b) simulation (c) testbed experiments

and clustered, and also for different flow input rates. We could

not include these results here due to space limitations.

We have implemented aggregation based back-pressure

scheme on our wireless mesh testbed. We modify Linux kernel

network stack to implement per-destination queuing and back-

pressure scheduling. Every node was equipped with a wireless

radio which is operated using MadWiFi [22] device driver.

To enable MAC prioritization, we used modified MadWiFi

driver provided by [23] group. We use a 4 node topology for

experimentation where node A initiates two flows destined

to node C and Node D. An intermediate node B is utilized

by node A to forwards packets of both flows which yields

two routing paths (A – B – C) and (A – B – D). All four

nodes where in the same contention neighborhood. We use

three different packet sizes of 50, 100 and 200 bytes. The

throughput results of the experiments are presented in Fig. 2c.

The aggregation based back-pressure scheduling outperforms

the scheme without aggregation by achieving at least double

aggregate throughput.

V. CONCLUSIONS

In this work, we presented an aggregation based back-

pressure scheduling policy for multi-hop wireless networks.

We found that aggregation can be used intelligently to further

increase the rates at which back-logged queues are served.

Since aggregation is performed using back-pressure principles,

the presented scheme achieves higher throughput and delay

performance while preserving the network utility and fairness

gains of back-pressure scheduling. Simulation and testbed

experiments confirm the feasibility of implementation and

performance improvements of the scheme.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” dec 1990, pp. 2130 –2132 vol.4.

[2] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” in Journal
of the Operational Research Society, vol. 49, 1998. [Online]. Available:
http://citeseer.ist.psu.edu/kelly98rate.html

[3] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer congestion
control, routing and scheduling design in ad hoc wireless networks,”
in INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, 2006, pp. 1 –13.

[4] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and
mac for stability and fairness in wireless networks,” Selected Areas in
Communications, IEEE Journal on, vol. 24, no. 8, pp. 1514 –1524, 2006.

[5] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Decision and Control, 2004. CDC. 43rd IEEE
Conference on, vol. 2, 2004, pp. 1484 – 1489 Vol.2.

[6] M. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, 2005, pp. 1723 – 1734 vol. 3.

[7] M. J. N. Georgiadis Leonidas and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” in Foundations and Trends in
Networking, 2006.

[8] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee, and A. Stolyar,
“Joint scheduling and congestion control in mobile ad-hoc networks,”
april 2008, pp. 619 –627.

[9] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “Diffq: Practical
differential backlog congestion control for wireless networks,” april
2009, pp. 262 –270.

[10] D. Tang and M. Baker, “Analysis of a local-area wireless network,” in
MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking. New York, NY, USA: ACM,
2000, pp. 1–10.

[11] C. Na, J. Chen, and T. Rappaport, “Measured traffic statistics and
throughput of ieee 802.11b public wlan hotspots with three different
applications,” Wireless Communications, IEEE Transactions on, vol. 5,
no. 11, pp. 3296 –3305, november 2006.

[12] A. Jain, M. Gruteser, M. Neufeld, and D. Grunwald, “Benefits of packet
aggregation in ad-hoc wireless network,” Tech. Rep., 2003.

[13] D. Kliazovich and F. Granelli, “Packet concatenation at the ip level for
performance enhancement in wireless local area networks,” Wirel. Netw.,
vol. 14, no. 4, pp. 519–529, 2008.

[14] R. Raghavendra, A. Jardosh, E. Belding, and H. Zheng, “Ipac: Ip-based
adaptive packet concatenation for multihop wireless networks,” 29 2006-
nov. 1 2006, pp. 2147 –2153.

[15] S. Ganguly, V. Navda, K. Kim, A. Kashyap, D. Niculescu, R. Izmailov,
S. Hong, and S. Das, “Performance optimizations for deploying voip
services in mesh networks,” Selected Areas in Communications, IEEE
Journal on, vol. 24, no. 11, pp. 2147 –2158, nov. 2006.

[16] R. Riggio, D. Miorandi, F. De Pellegrini, F. Granelli, and I. Chlamtac,
“A traffic aggregation and differentiation scheme for enhanced qos in
ieee 802.11-based wireless mesh networks,” Comput. Commun., vol. 31,
no. 7, pp. 1290–1300, 2008.

[17] H. Zhai and Y. Fang, “A distributed packet concatenation scheme for
sensor and ad hoc networks,” oct. 2005, pp. 1443 –1449 Vol. 3.

[18] L. Ying, S. S., R. A., and S. Liu, “On combining shortest-path and
back-pressure routing over multihop wireless networks,” Networking,
IEEE/ACM Transactions on, vol. PP, no. 99, p. 1, 2010.

[19] http://www.opnet.com.
[20] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area internet traffic

patterns and characteristics,” IEEE Network, vol. 11, pp. 10–23, 1997.
[21] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-

gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1 – 14, 1989.

[22] http://madwifi-project.org/.
[23] http://hop.cs.umass.edu/.

1268

